/

What standard is used to make comparisons in experiments?

A. Sample size

B. Control group

C. Dependent variable

D. Independent variable

Answer Explanation:

A control group is a factor that does not change during an experiment. Due to this, it is used as a standard for comparison with variables that do change such as a dependent variable.

Recall that these make up the scientific method, described below:

  • Problem: The question created because of an observation. Example: Does the size of a plastic object affect how fast it naturally degrades in a lake?
  • Research: Reliable information available about what is observed. Example: Learn how plastics are made and understand the properties of a lake.
  • Hypothesis: A predicted solution to the question or problem. Example: If the plastic material is small, then it will degrade faster than a large particle.
  • Experiment: A series of tests used to evaluate the hypothesis. Experiments consist of an independent variable that the researcher modifies and a dependent variable that changes due to the independent variable. They also include a control group used as a standard to make comparisons. 
    • Example: Collect plastic particles both onshore and offshore of the lake over time. Determine the size of the particles and describe the lake conditions during this time period.
  • Observe: Analyze data collected during an experiment to observe patterns. 
    • Example: Analyze the differences between the numbers of particles collected in terms of size.
  • Conclusion: State whether the hypothesis is rejected or accepted and summarize all results.
  • Communicate: Report findings so others can replicate and verify the results.

Therefore, the Correct Answer is B.

More Questions on TEAS 7 Science

  • Q #1: In the following single-replacement reaction, ______ replaces ______. Cl2+2NaI→2NaCl+I2

    A. sodium, iodine

    B. chlorine, iodine

    C. chlorine, sodium

    D. sodium, chlorine

    Answer Explanation

    In this reaction, chlorine (Cl2) is an element in the reaction that replaces iodine in the compound sodium iodide (NaI). This allows chlorine to form a compound with sodium (NaCl) and leaves iodine (I2) as an element. 

    Synthesis reactions involve two or more reactants (A and B) combining to form one product (AB). In the example provided, hydrogen (H2) and oxygen (O2) begin as separate elements. At the end of the reaction, the hydrogen and oxygen atoms are bonded in a molecule of water (H2O).

    Decomposition reactions have only one reactant (AB) that breaks apart into two or more products (A and B). In the example above, hydrogen peroxide (H2O2) breaks apart into two smaller molecules: water (H2O) and oxygen (O2).

    Single-replacement reactions involve two reactants, one compound (AB) and one element (C). In this type of reaction, one element replaces another to form a new compound (AC), leaving one element by itself (B). In the example, zinc replaces hydrogen in hydrochloric acid (HCl). As a result, zinc forms a compound with chlorine, zinc chloride (ZnCl2), and hydrogen (H2) is left by itself.

    Double-replacement reactions involve two reactants, both of which are compounds made of two components (AB and CD). In the example, silver nitrate, composed of silver (Ag1+) and nitrate (NO31-) ions, reacts with sodium chloride, composed of sodium (Na1+) and chloride (Cl1-) ions. The nitrate and chloride ions switch places to produce two compounds that are different from those in the reactants.

    Combustion reactions occur when fuels burn, and they involve specific reactants and products, as seen in the examples below. Some form of fuel that contains carbon and hydrogen is required. Examples of such fuels are methane, propane in a gas grill, butane in a lighter, and octane in gasoline. Notice that these fuels all react with oxygen, which is necessary for anything to burn. In all combustion reactions, carbon dioxide, water, and energy are produced. When something burns, energy is released, which can be felt as heat and seen as light.

  • Q #2: Which blood group is a universal donor?

    A. A

    B. B

    C. AB

    D. O

    Answer Explanation

    A person can be a universal blood donor or acceptor. A universal blood donor has type O blood, while a universal blood acceptor has type AB blood.

    There are several different types or groups of blood, and the major groups are A, B, AB, and O. Blood group is a way to classify blood according to inherited differences of red blood cell antigens found on the surface of a red blood cell. The type of antibody in blood also identifies a particular blood group. Antibodies are proteins found in the plasma. They function as part of the body’s natural defense to recognize foreign substances and alert the immune system.

    Depending on which antigen is inherited, parental offspring will have one of the four major blood groups. Collectively, the following major blood groups comprise the ABO system:

    • Blood group A: Displays type A antigens on the surface of a red blood cell and contains B antibodies in the plasma.
    • Blood group B: Displays type B antigens on the red blood cell’s surface and contains A antibodies in the plasma.
    • Blood group O: Does not display A or B antigens on the surface of a red blood cell. Both A and B antibodies are in the plasma.
    • Blood group AB: Displays type A and B antigens on the red blood cell’s surface, but neither A nor B antibodies are in the plasma

    In addition to antigens, the Rh factor protein may exist on a red blood cell’s surface. Because this protein can be either present (+) or absent (-), it increases the number of major blood groups from four to eight: A+, A-, B+, B-, O+, O-, AB+, and AB-.

     

  • Q #3: Which of the following determines the strength of an acidic solution?

    A. Litmus paper that turns red

    B. Litmus paper that turns blue

    C. Measured pH value equal to 7

    D. Measured pH value less than 7

    Answer Explanation

    Both litmus paper and a pH scale can be used to indicate whether a solution is acidic. However, a pH scale can also determine the strength of an acid.

    Researchers can determine the strength of an acid or a base by measuring the pH of a solution. The pH value describes how acidic or basic a solution is. On pH scale, shown below, if the number is less than 7 the solution is acidic. A pH greater than 7 means the solution is basic. When the pH is exactly 7, the solution is neutral.