/

What is the role of calcium in muscle contraction?

A. Calcium binds to tropomyosin to expose the myosin-binding sites on actin.

B. Calcium is released from the sarcoplasmic reticulum to initiate the sliding of actin and myosin filaments.

C. Calcium activates the motor neurons to stimulate muscle contraction.

D. Calcium is required for the relaxation of muscles after contraction.

Answer Explanation:

Muscle contraction is a complex process that involves the interaction between actin and myosin filaments in the muscle fibers. The sliding of these filaments is initiated by the release of calcium ions from the sarcoplasmic reticulum, a specialized organelle in muscle cells. The calcium ions bind to the protein troponin, which causes a conformational change in the troponin-tropomyosin complex, exposing the myosin-binding sites on actin. This allows the myosin heads to bind to actin, forming cross-bridges that pull the actin filaments towards the center of the sarcomere, resulting in muscle contraction.

Option a) is incorrect because calcium does not bind to tropomyosin directly, but rather binds to the protein troponin, causing a conformational change in the troponin-tropomyosin complex. Option c) is incorrect because calcium does not activate motor neurons, but rather is released from the sarcoplasmic reticulum in response to an action potential that travels down the motor neuron to the neuromuscular junction. Option d) is incorrect because calcium is required for muscle contraction, not relaxation. The relaxation of muscles after contraction is due to the active transport of calcium ions back into the sarcoplasmic reticulum, which allows the troponin-tropomyosin complex to return to its resting conformation, blocking the myosin-binding sites on actin and ending the cross-bridge cycle.

 

What function do calcium ions perform during the contraction of skeletal  muscle? | Socratic

 

Therefore, the Correct Answer is B.

More Questions on TEAS 7 Science

  • Q #1: During embryonic development, which of the following germ layers forms the nervous system?

    A. Ectoderm

    B. Endoderm

    C. Mesoderm

    D. Exoderm

    Answer Explanation

    The three germ layers that form during embryonic development are the ectoderm, mesoderm, and endoderm. The ectoderm is the outermost layer, and it gives rise to the skin, hair, nails, and nervous system. The nervous system develops from a specialized region of the ectoderm called the neural plate, which invaginates to form the neural tube. The neural tube ultimately gives rise to the brain and spinal cord, which make up the central nervous system, as well as the peripheral nervous system. The endoderm gives rise to the lining of the digestive and respiratory tracts, while the mesoderm gives rise to the musculoskeletal system, circulatory system, and several other organs. The exoderm is not a germ layer and does not exist during embryonic development.

    Ectoderm - Definition, Formation, Function and Quiz | Biology Dictionary

     

  • Q #2: Which of the following is an example of an exothermic reaction?

    A. Melting ice

    B. Burning wood

    C. Cooking an egg

    D. Dissolving sugar in water

    Answer Explanation

    Exothermic reactions are reactions that release energy in the form of heat, light, or sound. Burning wood is an example of an exothermic reaction because it releases heat and light. As the wood reacts with oxygen in the air, it undergoes a combustion reaction that releases energy in the form of heat and light. Melting ice is an endothermic reaction because it requires energy input to melt the solid ice into liquid water. Cooking an egg is a chemical reaction that involves denaturing the proteins in the egg, but it is not necessarily exothermic or endothermic. Dissolving sugar in water is also not an example of an exothermic reaction because it does not release energy in the form of heat, light, or sound.

    Endothermic and Exothermic Chemical Reactions

     

  • Q #3: Which of the following is an example of a double-blind study?

    A. Participants are randomly assigned to a treatment group or a control group

    B. Participants and researchers both know which group participants are assigned to

    C. Participants do not know which group they are assigned to, but researchers do

    D. Both participants and researchers do not know which group participants are assigned to

    Answer Explanation

    A double-blind study is a research design in which neither the participants nor the researchers know which group participants are assigned to. This is done to minimize bias and ensure that the results of the study are as objective as possible. In a double-blind study, the treatment and control groups are randomly assigned, and the participants and researchers are unaware of which group each participant is assigned to. Option a) is an example of a randomized controlled trial, which is a common research design, but it is not necessarily double-blind. Option b) is an example of an open-label study, in which both the participants and the researchers know which group each participant is assigned to. Option c) is an example of a single-blind study, in which the participants do not know which group they are assigned to, but the researchers do.

    Single, Double & Triple Blind Study | Definition & Examples