/

What is the correct order of the stages of the cell cycle?

A. G1,S,G2,M

B. G2,S,G1,M

C. M,S,G2,G1

D. S,M,G1,G1

Answer Explanation:

The cell cycle is an organized process divided into two phases: interphase and the M (mitotic) phase. During interphase, the cell grows and copies its DNA. After the cell reaches the M phase, division of the two new cells can occur. The G1, S, and G2 phases make up interphase.

  • G1: The first gap phase, during which the cell prepares to copy its DNA
  • S: The synthesis phase, during which DNA is copied
  • G2 : The second gap phase, during which the cell prepares for cell division

It may appear that little is happening in the cell during the gap phases. Most of the activity occurs at the level of enzymes and macromolecules. The cell produces things like nucleotides for synthesizing new DNA strands, enzymes for copying the DNA, and tubulin proteins for building the mitotic spindle. During the S phase, the DNA in the cell doubles, but few other signs are obvious under the microscope. All the dramatic events that can be seen under a microscope occur during the M phase: the chromosomes move, and the cell splits into two new cells with identical nuclei.

Therefore, the Correct Answer is A.

More Questions on TEAS 7 Science

  • Q #1: Blood oxygen levels are most likely low when blood _____.

    A. leaves the aorta

    B. fills the right atrium

    C. reaches body tissues

    D. flows through arteries

    Answer Explanation

    Blood continually flows in one direction, beginning in the heart and proceeding to the arteries, arterioles, and capillaries. When blood reaches the capillaries, exchanges occur between blood and tissues. After this exchange happens, blood is collected into venules, which feed into veins and eventually flow back to the heart’s atrium. The heart must relax between two heartbeats for blood circulation to begin.

    Two types of circulatory processes occur in the body:

    Systemic circulation

    • The pulmonary vein pushes oxygenated blood into the left atrium.
    • As the atrium relaxes, oxygenated blood drains into the left ventricle through the mitral valve. 3. The left ventricle pumps oxygenated blood to the aorta.
    • Blood travels through the arteries and arterioles before reaching the capillaries that surround the tissues.

    Pulmonary circulation

    • Two major veins, the Superior Vena Cava and the Inferior Vena Cava, brings deoxygenated blood from the upper and lower half of the body.
    • Deoxygenated blood is pooled into the right atrium and then sent into the right ventricle through the tricuspid valve, which prevents blood from flowing backward.
    • The right ventricle contracts, causing the blood to be pushed through the pulmonary valve into the pulmonary artery.
    • Deoxygenated blood becomes oxygenated in the lungs.
    • Oxygenated blood returns from the lungs to the left atrium through the pulmonary veins.

  • Q #2: In the following single-replacement reaction, ______ replaces ______. Cl2+2NaI→2NaCl+I2

    A. sodium, iodine

    B. chlorine, iodine

    C. chlorine, sodium

    D. sodium, chlorine

    Answer Explanation

    In this reaction, chlorine (Cl2) is an element in the reaction that replaces iodine in the compound sodium iodide (NaI). This allows chlorine to form a compound with sodium (NaCl) and leaves iodine (I2) as an element. 

    Synthesis reactions involve two or more reactants (A and B) combining to form one product (AB). In the example provided, hydrogen (H2) and oxygen (O2) begin as separate elements. At the end of the reaction, the hydrogen and oxygen atoms are bonded in a molecule of water (H2O).

    Decomposition reactions have only one reactant (AB) that breaks apart into two or more products (A and B). In the example above, hydrogen peroxide (H2O2) breaks apart into two smaller molecules: water (H2O) and oxygen (O2).

    Single-replacement reactions involve two reactants, one compound (AB) and one element (C). In this type of reaction, one element replaces another to form a new compound (AC), leaving one element by itself (B). In the example, zinc replaces hydrogen in hydrochloric acid (HCl). As a result, zinc forms a compound with chlorine, zinc chloride (ZnCl2), and hydrogen (H2) is left by itself.

    Double-replacement reactions involve two reactants, both of which are compounds made of two components (AB and CD). In the example, silver nitrate, composed of silver (Ag1+) and nitrate (NO31-) ions, reacts with sodium chloride, composed of sodium (Na1+) and chloride (Cl1-) ions. The nitrate and chloride ions switch places to produce two compounds that are different from those in the reactants.

    Combustion reactions occur when fuels burn, and they involve specific reactants and products, as seen in the examples below. Some form of fuel that contains carbon and hydrogen is required. Examples of such fuels are methane, propane in a gas grill, butane in a lighter, and octane in gasoline. Notice that these fuels all react with oxygen, which is necessary for anything to burn. In all combustion reactions, carbon dioxide, water, and energy are produced. When something burns, energy is released, which can be felt as heat and seen as light.

  • Q #3: What body system is the skeletal system most closely associated with when hematopoiesis happens?

    A. Urinary system

    B. Digestive system

    C. Muscular system

    D. Cardiovascular system

    Answer Explanation

    The cardiovascular system is closely associated with hematopoiesis because it includes the heart and blood vessels, which are responsible for circulating blood throughout the body. Hematopoiesis, the process of blood cell formation, primarily occurs in the bone marrow, which is part of the skeletal system. However, the cardiovascular system plays a crucial role in transporting these blood cells to various parts of the body once they are produced in the bone marrow.

    So, while the skeletal system provides the site for hematopoiesis, the cardiovascular system is responsible for distributing the blood cells, making it the most closely associated system in this context.