/

During the aging process, not all hormone levels decrease; some actually increase. Which of the following is a hormone that may increase as a person ages?

A. Cortisol

B. Insulin

C. Luteinizing

D. Thyroid

Answer Explanation:

The aging process affects hormone activity in one of three ways: their secretion can decrease, remain unchanged, or increase.

Hormones that decrease secretion include the following:

  • Estrogen (in women)
  • Testosterone (in men)
  • Growth hormone
  • Melatonin

In women, the decline in estrogen levels leads to menopause. In men, testosterone levels usually decrease gradually. Decreased levels of growth hormone may lead to decreased muscle mass and strength. Decreased melatonin levels may play an important role in the loss of normal sleep-wake cycles (circadian rhythms) with aging.

Hormones that usually remain unchanged or slightly decrease include the following:

  • Cortisol
  • Insulin
  • Thyroid hormones

Hormones that may increase secretions levels include the following:

Parathyroid hormone

  • Follicle-stimulating hormone (FSH)
  • Luteinizing hormone (LH)
  • Norepinephrine
  • Epinephrine, in the very old

Therefore, the Correct Answer is C.

More Questions on TEAS 7 Science

  • Q #1: In the following single-replacement reaction, ______ replaces ______. Cl2+2NaI→2NaCl+I2

    A. sodium, iodine

    B. chlorine, iodine

    C. chlorine, sodium

    D. sodium, chlorine

    Answer Explanation

    In this reaction, chlorine (Cl2) is an element in the reaction that replaces iodine in the compound sodium iodide (NaI). This allows chlorine to form a compound with sodium (NaCl) and leaves iodine (I2) as an element. 

    Synthesis reactions involve two or more reactants (A and B) combining to form one product (AB). In the example provided, hydrogen (H2) and oxygen (O2) begin as separate elements. At the end of the reaction, the hydrogen and oxygen atoms are bonded in a molecule of water (H2O).

    Decomposition reactions have only one reactant (AB) that breaks apart into two or more products (A and B). In the example above, hydrogen peroxide (H2O2) breaks apart into two smaller molecules: water (H2O) and oxygen (O2).

    Single-replacement reactions involve two reactants, one compound (AB) and one element (C). In this type of reaction, one element replaces another to form a new compound (AC), leaving one element by itself (B). In the example, zinc replaces hydrogen in hydrochloric acid (HCl). As a result, zinc forms a compound with chlorine, zinc chloride (ZnCl2), and hydrogen (H2) is left by itself.

    Double-replacement reactions involve two reactants, both of which are compounds made of two components (AB and CD). In the example, silver nitrate, composed of silver (Ag1+) and nitrate (NO31-) ions, reacts with sodium chloride, composed of sodium (Na1+) and chloride (Cl1-) ions. The nitrate and chloride ions switch places to produce two compounds that are different from those in the reactants.

    Combustion reactions occur when fuels burn, and they involve specific reactants and products, as seen in the examples below. Some form of fuel that contains carbon and hydrogen is required. Examples of such fuels are methane, propane in a gas grill, butane in a lighter, and octane in gasoline. Notice that these fuels all react with oxygen, which is necessary for anything to burn. In all combustion reactions, carbon dioxide, water, and energy are produced. When something burns, energy is released, which can be felt as heat and seen as light.

  • Q #2: Which statement best represents Mendel’s experiments with garden peas?

    A. As a result, Mendel developed several theories that have since been disproved.

    B. Mendel realized he was on an incorrect track, which led him to other experimental media

    C. As a result, Mendel developed foundational conclusions that are still valued and followed today.

    D. Mendel collaborated with others interested in genetics to develop heredity guidelines we still use today

    Answer Explanation

    Mendel developed theories of genetics that scientists around the world use today.

    From experiments with garden peas, Mendel developed a simple set of rules that accurately predicted patterns of heredity. He discovered that plants either self-pollinate or cross-pollinate, when the pollen from one plant fertilizes the pistil of another plant. He also discovered that traits are either dominant or recessive. Dominant traits are expressed, and recessive traits are hidden.

    Mendel’s Theory of Heredity

    To explain his results, Mendel proposed a theory that has become the foundation of the science of genetics. The theory has five elements:

    • Parents do not transmit traits directly to their offspring. Rather, they pass on units of information called genes.
    • For each trait, an individual has two factors: one from each parent. If the two factors have the same information, the individual is homozygous for that trait. If the two factors are different, the individual is heterozygous for that trait. Each copy of a factor, or gene, is called an allele.
    • The alleles determine the physical appearance, or phenotype. The set of alleles an individual has is its genotype.
    • An individual receives one allele from each parent.
    • The presence of an allele does not guarantee that the trait will be expressed.

  • Q #3: In which state of matter are the intermolecular forces between particles in a substance the strongest?

    A. Gas

    B. Liquid

    C. Plasma

    D. Solid

    Answer Explanation

    In solids, particles are usually closer together than in other states of matter because of the strong cohesive forces between the particles.

    • Solids, liquids, gases, and plasmas differ from one another in the amount of energy that the particles have and the strength of the cohesive forces that hold the particles together.
    • Cohesion is the tendency of particles of the same kind to stick to each other.
    • A solid has the lowest amount of energy because its particles are packed close together. Liquids have more energy than a solid, and gases have more energy than solids or liquids because the cohesive forces are very weak.