/

A student notices a pattern of stripes on five tigers. Each of the five tigers has the same stripe pattern. Using his inductive reasoning, what does he logically assume based on this information?

A. The pattern continues to change over time.

B. Natural adaptations cause this pattern to occur

C. Each offspring will have the same stripe pattern

D. Ancestors of the tigers have different stripe patterns

Answer Explanation:

Inductive reasoning involves making specific observations and using them to make broad statements. The student observes that all of the tigers have the same stripe pattern. He can use this observation to make the broad statement that all the tigers’ offspring will have the same stripe pattern.

Inductive reasoning involves drawing a general conclusion from specific observations. This form of reasoning is referred to as the “from the bottom up” approach. Information gathered from specific observations can be used to make a general conclusion about the topic under investigation. In other words, conclusions are based on observed patterns in data.

Therefore, the Correct Answer is C.

More Questions on TEAS 7 Science

  • Q #1: What standard is used to make comparisons in experiments?

    A. Sample size

    B. Control group

    C. Dependent variable

    D. Independent variable

    Answer Explanation

    A control group is a factor that does not change during an experiment. Due to this, it is used as a standard for comparison with variables that do change such as a dependent variable.

    Recall that these make up the scientific method, described below:

    • Problem: The question created because of an observation. Example: Does the size of a plastic object affect how fast it naturally degrades in a lake?
    • Research: Reliable information available about what is observed. Example: Learn how plastics are made and understand the properties of a lake.
    • Hypothesis: A predicted solution to the question or problem. Example: If the plastic material is small, then it will degrade faster than a large particle.
    • Experiment: A series of tests used to evaluate the hypothesis. Experiments consist of an independent variable that the researcher modifies and a dependent variable that changes due to the independent variable. They also include a control group used as a standard to make comparisons. 
      • Example: Collect plastic particles both onshore and offshore of the lake over time. Determine the size of the particles and describe the lake conditions during this time period.
    • Observe: Analyze data collected during an experiment to observe patterns. 
      • Example: Analyze the differences between the numbers of particles collected in terms of size.
    • Conclusion: State whether the hypothesis is rejected or accepted and summarize all results.
    • Communicate: Report findings so others can replicate and verify the results.

  • Q #2: In which state of matter are the intermolecular forces between particles in a substance the strongest?

    A. Gas

    B. Liquid

    C. Plasma

    D. Solid

    Answer Explanation

    In solids, particles are usually closer together than in other states of matter because of the strong cohesive forces between the particles.

    • Solids, liquids, gases, and plasmas differ from one another in the amount of energy that the particles have and the strength of the cohesive forces that hold the particles together.
    • Cohesion is the tendency of particles of the same kind to stick to each other.
    • A solid has the lowest amount of energy because its particles are packed close together. Liquids have more energy than a solid, and gases have more energy than solids or liquids because the cohesive forces are very weak.

  • Q #3: Which sequence describes the hierarchy level of biological organization?

    A. Kingdom, phylum, class, order, family, genus, and species

    B. Genus, class, kingdom, species, order, phylum, and family

    C. Genus, class, kingdom, species, order, phylum, and family

    D. Species, kingdom, genus, class, family, phylum, and order

    Answer Explanation

    Taxonomy is the process of classifying, describing, and naming organisms. There are seven levels in the Linnaean taxonomic system, starting with the broadest level, kingdom, and ending with the species level. For example, in the image the genus level contains two types of bears, but the species level shows one type. Additionally, organisms in each level are found in the level above it. For example, organisms in the order level are part of the class level. This classification system is based on physical similarities across living things. It does not account for molecular or genetic similarities.